

DESCRIPTION

FM[®] 2555 is a 350°F (177°C) cure, 440°F (227°C) post-cure modified cyanate ester film adhesive. This adhesive has good high temperature properties with low dielectric constant and low loss tangent electrical properties.

Other products in this cyanate ester family include CYCOM[®] 5575-2 glass- and quartz- reinforced prepreg, FM[®] 2525 adhesive and FM[®] 6555-1 and BR[®] 6565 syntactic foams.

FEATURES & BENEFITS

- One of a family of compatible products based on second-generation cyanate ester chemistry
- Low dielectric constant and loss tangent for radome applications
- Suitable for bonding both metals and composites; co-cures with most 350°F (177°C) cure prepregs
- Service temperature -67° to 450°F (-55° to 232°C); good high temperature adhesion
- Low out-gassing

SUGGESTED APPLICATIONS

- Honeycomb sandwich construction
- Metal-to-metal bonding
- Composite-to-metal bonding
- Composite-to-composite bonding
- 350°F (177°C) cure satellite structure applications

CHARACTERISTICS

Table 1 | Physical Properties

Shelf Life	Six months at 0°F (-18°C) Three months at 40°F (4°C)			
	30+ days at 75°F (24°C)			
Storage	Storage in excess of six months at 0°F (-18°C) or three months at 40°F (4°C) in sealed container			
	To prevent moisture pickup sealed container should not be opened until the adhesive reaches ambient temperature			
Shop Life	In excess of 21 days at room temperature			
Gel Time	5 minutes nominal at 350°F (177°C)			
	14 minutes nominal at 300°F (149°C)			
	150 minutes nominal at 250°F (121°C)			
Volatiles	Less than 1%			
Tg, dry	450°F (232°C)			
Out-gassing (ASTM E595)	TML 0.25			
	CVCM 0.001			
	WVR 0.30			
СТЕ	Room temperature to 400°F (204°C)			
	Without post-cure 37.5			
	With post-cure 42.8			

Table 2 | Electrical Properties

Dielectric constant/loss tangent	2.80/0.002 at 77°F (25°C)
10 GHz	2.81/0.003 at 400°F (204°C)

2

PROPERTIES

Table 3 | Mechanical Properties: Standard cure, metal bonding¹

Property	Test Temperature °F (°C)	Strength psi (MPa)	Specimen
Lap shear Metal-to-metal	Room Temp 250 (121) 350 (177) 450 (232) 500 (260) 600 (316)	2700 (18.62) 3000 (20.68) 2600 (17.93) 3000 (20.68) 2500 (17.24) 2000 (13.79)	2024/T3 FPL etch
Lap shear Metal-to-metal	-67 (-55) Room Temp 250 (121) 350 (177) 450 (232) 500 (260)	3100 (21.37) 3000 (20.68) 3300 (22.75) 3000 (20.68) 3300 (22.75) 3700 (25.51)	2024/T3 FPL etch Phosphoric acid anodize
Flatwise tensile Metal skins-to-honeycomb core	-67 (-55) Room Temp 250 (121) 350 (177) 450 (232)	1000 (6.895) 950 (6.550) 810 (5.585) 850 (5.861) 650 (4.482)	0.020 inch thick 2024/T3 aluminum skins 5052 1/4 inch, 7.9 density, 0.5 inch thick core FPL etch Phosphoric acid anodize

¹FM 2555 film adhesives at 0.060 psf

Table 4 Mechanical Properties: Standard cure, composite bonding ¹				
Property	Test Temperature °F (°C)	Strength psi (MPa)	Specimen	
	Room Temp	325 (2.241) core failure	CYCOM [®] 5575-2/7781 HRH-10 core 4 lb. density 3/16 inch cell 1 inch thick Co-cure	
	Room Temp	600 (4.137) core failure	CYCOM [®] 5575-2/7781 HRH-10 core 6 lb. density 3/16 inch cell 1 inch thick Co-cure	
Flatwise tensile	Room Temp	900 (6.205) cohesive failure	CYCOM [®] 5575-2/7781 HRP core 4 lb. density 3/16 inch cell 1 inch thick Co-cure	
	Room Temp	1300 (8.963) cohesive failure	CYCOM [®] 5575-2/7781 HRP core 8 lb. density 3/16 inch cell 1 inch thick Co-cure	
Flatwise tensile	Room Temp	500 (3.447) core failure	CYCOM [®] 5575-2/7781 HRH-327 core 4 lb. density 3/16 inch cell 1 inch thick Co-cure	

Table 5 | Mechanical properties: Standard cure, composite bonding, continued

Property	Test Temperature °F (°C)	CYCOM [®] 5250-3/6781 psi (MPa)	CYCOM [®] 5575-2/7781 psi (MPa)	CYCOM [®] 5208/3K70PW psi (MPa)
	-67 (-55)	3100 (21.37)	3000 (20.68)	2600 (17.93)
	Room Temp.	3200 (22.06)	3400 (23.44)	2800 (19.31)
Double lap shear	Room Temp., wet ²	3000 (20.68)	-	-
Precured composite-	250 (121)	3500 (24.13)	3900 (26.89)	3800 (26.20)
to-composite	250 (121), wet	2900 (19.99)	-	-
	350 (177)	3700 (25.51)	4100 (28.27)	-
	350(177), wet	2700 (18.62)	-	-

¹ FM 2555 film adhesives at 0.060 psf

² Wet conditioning: 72 hour water boil

Note: Cytec recommends drying all non-metallic core prior to bonding

Table 6 | Mechanical Properties: Standard cure, thermal aging

Proporty	Conditioning	Test Temperature		
Property		Room Temp	250 °F (121°C)	400°F (204°C)
Lap Shear, psi (MPa)	None	2700 (18.62)	3000 (20.68)	2600 (17.93)
Metal-to-metal bonding 2024/T3, FPL etch	72 hour water boil	2800 (19.31)	3800 (26.20)	3600 (24.82)
	7 days hydraulic oil	3400 (23.44)	3900 (26.89)	3900 (26.89)
	7 days JP4	3700 (25.51)	3900 (26.89)	3900 (26.89)
	30 days 5% salt spray at 95°F (35°C)	3300 (22.75)	3400 (23.44)	3600 (24.82)
	30 days at 95% RH, 160°F (71°C)	2800 (19.31)	3200 (22.06)	3900 (26.89)

Table 7 | Mechanical Properties: Standard cure, environmental resistance

Broporty	Conditioning		Test Temperature	
Froperty	Conditioning	Room Temp	250 °F (121°C)	400°F (204°C)
Lap Shear, psi (MPa)	None	2700 (18.62)	3000 (20.68)	2600 (17.93)
Metal-to-metal bonding 2024/T3, FPL etch	500 hours at 350°F (177°C)	3700 (25.51)	3700 (25.51)	4200 (28.96)
	1000 hours at 350°F (177°C)	3200 (22.06)	3400 (23.44)	3200 (22.06)
	3000 hours at 350°F (177°C)	2400 (16.55)	2600 (17.93)	2400 (16.55)
Flatwise Tensile, psi (MPa)	None	950 (6.550)	910 (6.274)	910 (6.274)
Metal-to-metal bonding FPL etch 5052 1/4 inch cell, 7.9 density core	500 hours at 350°F (177°C)	640 (4.413)	550 (3.792)	770 (5.309)
	1000 hours at 350°F (177°C)	720 (4.964)	680 (4.688)	740 (5.102)
	3000 hours at 350°F (177°C)	700 (4.826)	560 (3.861)	630 (4.344)

APPLICATION NOTES

Cure CycleRecommended cure cycle for FM 2555 is as follows:PressureFull vacuum, 26 in. Hg (88 kPa) and 15 to 45 psi (103 to 310 kPa) autoclave pressure
Vent at 20 psi (139 kPa)Heat upRoom temperature to 350° F (177°C) at 2 to 5°F (1 to 3°C) per minuteHold $350 \pm 10^{\circ}$ F (177 $\pm 5.5^{\circ}$ C) for 240 minutesCool downUnder pressure to less than 140°F (60°C)Post-cure 440° F (227°C) for 120 minutes

For recommendations on other cure cycles and processes contact your CYTEC Technical Service representative.

Surface Preparation for Cured Composite Substrates

Most high-performance composites employ removable peel ply of nylon or Dacron fabric. Good bonding can be achieved with no surface preparation. Remove the peel ply and bond immediately.

For surfaces without peel ply:

- Lightly sand the surface to be bonded using 240 to 280 grit sandpaper
- Clean the surface using a clean, lint-free cotton cloth and MEK or acetone
- Dry thoroughly at room temperature before bonding

Surface Preparation for Aluminum Skins

A clean, dry, grease-free surface is required for optimum performance. FM 2555 can be used with all standard cleaning techniques involving solvent degreasing, alkaline cleaning, surface abrading, chemical deoxidizing, alodining, anodizing and/or priming. General guidance can be found in ASTM D 2651.

Best results for aluminum are obtained by a five step procedure of solvent degreasing, alkaline cleaning, chemical deoxidizing (etching), phosphoric acid anodizing¹ and priming with BR[®] 6747-1, Metlbond 6725-1 or BR[®] 127 primer.

Surface Preparation for Aluminum Core

No cleaning is necessary unless the core has been contaminated by foreign matter. If contaminated, degrease with MEK or vapor degrease.

Surface Preparation for Other Substrates

Information concerning the surface treatment of substrates other than aluminum is given in MIL-A-9067.

Boeing patent 4,085,012; April 18, 1978. It is now being used by a large number of aircraft manufacturers due to the improved surface bond durability it provides.

Bonding Procedure

- 1. Remove FM 2555 from refrigerated storage and allow it to reach room temperature before unpacking
- Remove either of the interliners and place the adhesive against the surface to be bonded. Care should be taken to prevent air entrapment between the film adhesive and substrate, especially in large bond areas.
- If additional tack is desired, the adhesive may be heated to as high as 140°F (60°C) without altering the adhesive properties. Before heat tacking, be sure the film is in the proper position as removal will be difficult.
- 4. Remove the other interliner and complete the assembly.

PRODUCT HANDLING AND SAFETY

Cytec Engineered Materials recommends wearing clean, impervious gloves when working with cyanate ester resin systems to reduce skin contact and to avoid contamination of the product.

Materials Safety Data Sheets (MSDS) and product labels are available upon request and can be obtained from any Cytec Engineered Materials Office.

DISPOSAL OF SCRAP MATERIAL

Disposal of scrap material should be in accordance with local, state, and federal regulations.

CONTACT INFORMATION

GLOBAL HEADQUARTERS

Tempe, Arizona *tel* 480.730.2000 *fax* 480.730.2088

NORTH AMERICA

Olean, New York	Springfield, Massachusetts	Havre de Grace, Maryland
<i>tel</i> 716.372.9650	<i>tel</i> 1.800.253.4078	<i>tel</i> 410.939.1910
<i>fax</i> 716.372.1594	<i>fax</i> 716.372.1594	<i>fax</i> 410.939.8100
Winona, Minnesota	Anaheim, California	Orange, California
<i>tel</i> 507.454.3611	<i>tel</i> 714.630.9400	tel 714.639.2050
<i>fax</i> 507.452.8195	<i>fax</i> 714.666.4345	fax 714.532.4096
Greenville, Texas <i>tel</i> 903.457.8500 <i>fax</i> 903.457.8598	Cytec Carbon Fibers LLC Piedmont, South Carolina <i>tel</i> 864.277.5720 <i>fax</i> 864.299.9373	D Aircraft Products, Inc. Anaheim, California <i>tel</i> 714.632.8444 <i>fax</i> 714.632.7164
EUROPE AND ASIA		
Wrexham, United Kingdom	Östringen, Germany	Shanghai, China
<i>tel</i> +44.1978.665200	tel +49.7253.934111	<i>tel</i> +86.21.5746.8018
<i>fax</i> +44.1978.665222	fax +49.7253.934102	<i>fax</i> +86.21.5746.8038

DISCLAIMER: The data and information provided in this document have been obtained from carefully controlled samples and are considered to be representative of the product described. Cytec Engineered Materials (CEM) does not express or imply any guarantee or warranty of any kind including, but not limited to, the accuracy, the completeness or the relevance of the data and information set out herein. Because the properties of this product can be significantly affected by the fabrication and testing techniques employed, and since CEM does not control the conditions under which its products are tested and used, CEM cannot guarantee that the properties provided will be obtained with other processes and equipment. No guarantee or warranty is provided that the product is adapted for a specific use or purpose and CEM declines any liability with respect to the use made by any third party of the data and information contained herein. CEM has the right to change any data or information when deemed appropriate.

All trademarks are the property of their respective owners.

